# $\mathrm{GaCl}_{3}$-Catalyzed Allenyne Cycloisomerizations to Allenenes 

Sang Ick Lee, So Hee Sim, Soo Min Kim, Kwang Kim, and Young Keun Chung*

Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
ykchung@snu.ac.kr
Received June 27, 2006


Cycloisomerizations of allenynes to allenenes have been studied in the presence of catalytic amounts of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]-$ $\mathrm{SbF}_{6}$ in dichloromethane or $\mathrm{GaCl}_{3}$ in toluene. Both catalytic systems are quite effective for terminal 1,6-allenynes. However, they showed different reactivities toward allenynes with di-substituents at the allenic terminal carbon. For the $\mathrm{GaCl}_{3}$-catalyzed reactions, allenenes were obtained in reasonable to high yields. However, for a $\mathrm{Au}(\mathrm{I})$-catalyzed reaction, a triene was obtained in a poor yield. Thus, $\mathrm{GaCl}_{3}$ serves as an effective catalyst for the cycloisomerization of allenynes bearing a terminal alkyne to give cyclic allenenes in reasonable to high yields.

The transition-metal-catalyzed cyclization of enyne systems has recently experienced tremendous developments. ${ }^{1}$ Allenynes are quite attractive substrates due to their use in diverse synthetic applications as well as in new reactions of unsaturated systems. ${ }^{2}$ Recently, they have been widely used in intramolecular PausonKhand reactions. ${ }^{3}$ However, allenynes still have been much less involved in the transition-metal-catalyzed (or -mediated) cyclizations than their enyne analogues. Particlularly, transition-metal-catalyzed intramolecular cycloisomerizations of enynes have recently been widely studied. ${ }^{4}$ However, the use of

[^0]allenynes in the metal-catalyzed cycloisomerization is quite rare. Recently, $\mathrm{PtCl}_{2}$-catalyzed cycloisomerizations of allenynes were reported by Murakami's and Malacria's groups. ${ }^{5}$ We initially studied the use of gold-catalyzed cycloisomerization of allenynes. However, the expected reaction did not proceed in many cases. This limitation prompted us to investigate an alternative, more reactive catalytic system. Herein, we describe a cycloisomerization of allenynes upon treatment with a catalytic amount of $\mathrm{GaCl}_{3}$. Recently, the Chatani group reported ${ }^{6}$ that $\mathrm{GaCl}_{3}$ is a highly active catalyst for the skeletal rearrangement of 1,6-enynes and 1,7-enynes.

We initially screened various metal catalysts such as the Grubbs catalyst, ${ }^{7} \mathrm{Au}(\mathrm{L}) \mathrm{Cl} / \mathrm{AgX},{ }^{4} \mathrm{FeCl}_{3},{ }^{8} \mathrm{PtCl}_{2},{ }^{5} \mathrm{InCl}_{3},{ }^{9} \mathrm{GaCl}_{3},{ }^{6}$ and $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \mathrm{BF}_{4}{ }^{10}$ for the cycloisomerization of allenynes (Table 1).

Unfortunately, when $\mathrm{PtCl}_{2},\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \mathrm{BF}_{4}$, or $\mathrm{FeCl}_{3}$ was used as a catalyst, the reactant was recovered. The use of Grubbs catalyst led to polymerization of the reactant. When $\mathrm{InCl}_{3}$ was used as a catalyst, $45 \%$ of the cycloisomerized product was isolated with a recovery of $40 \%$ of the reactant. However, when $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{SbF}_{6}$ and $\mathrm{GaCl}_{3}$ were used as a catalyst, the metath-

[^1]TABLE 1. Allenyne Metathesis by Various Catalysts ${ }^{a}$

|  |  | $\rightarrow$ |  <br> 2a |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| entry | catalyst | solvent | $\begin{gathered} T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | (h) | yield $(\%)^{b}$ |
| 1 | $\begin{aligned} & 5 \mathrm{~mol} \mathrm{\%} \mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2-} \\ & \text { (benzylidene) } \end{aligned}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 15-20 | 6 | N/A |
| 2 | $5 \mathrm{~mol} \%\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \mathrm{BF}_{4}$ | DCE | 60 | 24 | NR |
| 3 | $5 \mathrm{~mol} \% \mathrm{FeCl}_{3}$ | toluene | 80 | 24 | NR |
| 4 | $5 \mathrm{~mol} \% \mathrm{PtCl}_{2}$ | toluene | 80 | 24 | NR |
| 5 | $10 \mathrm{~mol} \% \mathrm{InCl}_{3}$ | toluene | 80 | 24 | 45(40) |
| 6 | $5 \mathrm{~mol} \%[\mathrm{Au}(\mathrm{PPh} 3)] \mathrm{SbF}_{6}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 15-20 | 0.5 | 75 |
| 7 | $10 \mathrm{~mol} \% \mathrm{GaCl}_{3}$ | toluene | 15-20 | 2 | 81 |
| ${ }^{a} 0.2 \mathrm{~g}$ ( 0.691 mmol ) of $\mathbf{1 a}$ in 5 mL of solvent was used. ${ }^{b}$ Isolated yield <br> ${ }^{c}$ DCE $=1,2$-dichloroethane. ${ }^{d}$ Yield in parentheses is reactant recovered |  |  |  |  |  |
|  |  |  |  |  |  |

esis product was isolated in $75 \%$ and $81 \%$ yield, respectively. The obtained cycloisomerized product $(\mathbf{1 A})$ was the same type as those obtained by the molybdenum alkylidene complexcatalyzed ring-closing metathesis ( RCM ) of allenynes ${ }^{11}$ but quite different from those obtained by $\mathrm{PtCl}_{2}$-catalyzed cycloisomerization of allenynes. ${ }^{5}$ Encouraged by this result, several allenynes were examined for $\mathrm{GaCl}_{3}$ - and $\mathrm{Au}(\mathrm{I})$-catalyzed metathesis reactions (Table 2).

Terminal allenynes $\mathbf{1 a} \mathbf{- 1} \mathbf{c}$ having sulfonamide or sulfone in a tether were found to serve as good substrates for both $\mathrm{GaCl}_{3^{-}}$ and $\mathrm{Au}(\mathrm{I})$-catalyzed reactions (entries $1-5$ ). This is in sharp contrast to previously reported results on the Mo-catalyzed RCM of allenynes, ${ }^{11}$ where no reaction occurred with allenynes bearing the allenic terminus unsubstituted. Allenynes $\mathbf{1 d} \mathbf{- 1 g}$ having a substituent on the 3 position (entries $6-10$ ) or having a substituent on the 5 position (entries 11 and 12) were also good substrates. However, allenynes with di-substituents at the allenic terminal carbon showed a different behavior depending upon the catalyst used. When $\mathrm{GaCl}_{3}$ was used as catalyst, an allenyne ( $\mathbf{1 h}$ ) (entry 13 ) afforded the product $\mathbf{2 h}$ in $60 \%$ yield and allenynes $\mathbf{1} \mathbf{i}$ and $\mathbf{1} \mathbf{j}$ bearing a cyclic group on the allenic terminal carbon (entries 14 and 15) were also good substrates and led to the isolation of the products $\mathbf{2 i}$ and $\mathbf{2 j}$ in $53 \%$ and $83 \%$ yields, respectively. Thus, substantial structural variations can be accommodated. Interestingly, when $\mathbf{1} \mathbf{j}$ was reacted with $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{SbF}_{6}$, a cycloisomerized product ( $\left.\mathbf{3} \mathbf{j}\right)$ was isolated in low yield (38\%). This transformation is similar to the $\mathrm{PtCl}_{2}-$ catalyzed cycloisomerization of allenynes reported by Murakami's group. ${ }^{5 \mathrm{a}}$ Thus, $\mathrm{GaCl}_{3}$ is a better catalyst for the cycloisomerization of allenynes with di-substituents at the allenic terminal carbon. Unfortunately, no reaction was observed for allenynes having a substituent ( $\mathbf{1 k}$ and $\mathbf{1 1}$ ) on the alkyne terminal position (entries 17-19) and a 1,7-allenyne (1m) (entries 20 and 21) under the conditions described here.

When allenene ( $\mathbf{1} \mathbf{n}$ ) was reacted in the presence of $\mathrm{GaCl}_{3}$ catalyst (Scheme 1), an RCM product (3n) was obtained in $22 \%$ yield with recovery of reactant in $76 \%$ yield. However, no reaction was observed in the presence of $\mathrm{Au}(\mathrm{I})$ catalyst. Treatment of 1,6 -diene ( $\mathbf{1 0}$ ) under the same reaction conditions gave no reaction product. Thus, the $\mathrm{GaCl}_{3^{-}}$and $\mathrm{Au}(\mathrm{I})$-catalyzed cycloisomerization were unique to allenyne substrates.

When allenyne 1a- $d$ with the alkyne terminus deuterated was used, the deuterium was labeled at the 1-position of the produced

[^2]
## SCHEME 1


allene (eq 1). Murakami et al. ${ }^{11}$ also observed the formation of the same deuterated reaction product.


Next, when a crossover reaction using a mixture of $\mathbf{1 h}$ and $\mathbf{1} \mathbf{j}$ was carried out in the presence of $\mathrm{GaCl}_{3}$, no crossover products were obtained (eq 2). This observation was quite different from the results observed in the molybdenum-catalyzed reaction, where the crossover products were isolated. ${ }^{6}$


A general mechanistic view has so far remained elusive. However, our experimental observations suggest that the mechanism will be different from that proposed by Murakami ${ }^{11}$ but will follow the general process depicted by Chatani ${ }^{6}$ (Scheme 2). ${ }^{12}$

In conclusion, we have shown that the unprecedented $\mathrm{GaCl}_{3^{-}}$ and $\mathrm{Au}(\mathrm{I})$-catalyzed cycloisomerization of allenyne systems is a highly versatile tool for obtaining products that cannot be easily attained with other metals. Both catalytic systems are quite effective for terminal 1,6 -allenynes. However, they showed different reactivities toward allenynes with di-substituents at the allenic terminal carbon.

## Experimental Section

General Procedure for $\mathbf{G a C l}_{3}$-Catalyzed Metathesis of Allenyne. To a flame-dried 10 mL Schlenk containing 5 mL of toluene were added $\mathrm{GaCl}_{3}$ ( $10 \mathrm{~mol} \%, 14 \mathrm{mg}$ ) and allenyne ( 0.7 mmol ) sequentially. After the reactant disappeared, 1 mL of diisopropylamine was added. After the reaction mixture was quenched, the solvent was removed under reduced pressure. Flash column chromatography gave the product.

General Procedure for $\mathbf{A u C l}\left(\mathrm{PPh}_{3}\right) / \mathrm{AgSbF}_{6}$-Catalyzed Metathesis of Allenyne. To a flame-dried 10 mL Schlenk containing
(12) One of the referees suggested an alternative, path "b", as a possible reaction path.

TABLE 2. $\mathrm{GaCl}_{3}-$ and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{SbF}_{6}$-Catalyzed Metathesis of Allenyne ${ }^{a}$

${ }^{a}$ Condition A: $0.2 \mathrm{~g}(0.691 \mathrm{mmol})$ of allenyne and $10 \mathrm{~mol} \% \mathrm{GaCl}_{3}$ in 5 mL of toluene were used. Condition B: $0.2 \mathrm{~g}(0.691 \mathrm{mmol})$ of allenyne, 5 mol $\% \mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$, and $7 \mathrm{~mol} \% \mathrm{AgSbF}_{6}$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used. ${ }^{b}$ Isolated yield. ${ }^{c} 20 \mathrm{~mol} \% \mathrm{GaCl}_{3}$ was used. ${ }^{d}$ No reaction.

## SCHEME 2



5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(5 \mathrm{~mol} \%, 9 \mathrm{mg}), \mathrm{AgSbF}_{6}$ ( $7 \mathrm{~mol} \%, 10 \mathrm{mg}$ ), and allenyne ( 0.7 mmol ) sequentially. After the reactant disappeared, the solvent was removed under reduced pressure. A flash column chromatography gave the product.

3-(Propa-1,2-dienyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2a). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}$, $2 \mathrm{H}), 4.93(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.7,54.8,55.7,78.5,87.8,120.7,127.6,130.0$, 133.0, 134.2, 143.7, 211.0 ppm . Exact mass for $\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 261.0823, (found) 261.0825.
$N$-(Buta-2,3-dienyl)-2,4,6-trimethyl- $N$-(prop-2-ynyl)benzenesulfonamide (1b). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.19(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.77$ (m, 2 H ), $5.02(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.0,22.8,34.6,44.7,73.0,76.3,85.3$, 132.0, 132.3, 140.5, 142.8, 209.9 ppm. Exact mass for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 289.1137, (found) 289.1133.

1-(Mesitylsulfonyl)-3-(propa-1,2-dienyl)-2,5-dihydro-1H-pyrrole (2b). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.29$ (s, 3 H ), 2.63 ( $\mathrm{s}, 6$ $\mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.94$ $(\mathrm{m}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.0$,
$22.9,53.3,54.3,78.3,87.8,120.6,131.9,132.6,132.7,140.2,142.5$, 210.8. Exact mass for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 289.1137, (found) 289.1140 .

1c. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.94(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~m}$, $1 \mathrm{H}), 7.40(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.9,29.2,74.5$, $75.7,76.0,83.0,88.4,128.7,131.5,135.0,136.4,210.5 \mathrm{ppm}$. Exact mass for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 386.0647, (found) 386.0651 .

2c. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.36-3.37(\mathrm{~m}, 4 \mathrm{H}), 4.97$ $(\mathrm{m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~m}, 2$ H), $7.97(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 39.1,39.5$, $78.4,89.3,91.3,122.8,129.0,131.0,134.9,135.1,137.0,211.3 \mathrm{ppm}$. Exact mass for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 386.0647, (found) 386.0651.
$N$-(But-3-yn-2-yl)- $N$-(buta-2,3-dienyl)-4-methylbenzenesulfonamide (1d). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3$ H), $2.15(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.97$ $(\mathrm{m}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~m}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.8,22.8,44.0,46.0,73.4,76.6$, 81.5, 89.3, 127.7, 129.7, 136.6, 143.6, 208.9 ppm. Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 275.0980, (found) 275.0982.

2-Methyl-3-(propa-1,2-dienyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2d). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.49(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 4.07-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 2$ H), $5.45(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 21.6,22.3,54.5,63.0,78.5,87.4,120.3,127.3,129.8,135.1$, 143.5, 210.7 ppm . Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 275.0980, (found) 275.0982.

N -(Buta-2,3-dienyl)-4-methyl- N -(pent-1-yn-3-yl)benzenesulfonamide (1e). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.02(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3$ H), 1.77 (qd, $J=7.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (s, 3 H ), 3.72 (m, 1 H ), 3.91 (m, 1 H ), 4.60 (td, $J=7.6,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 10.7$, $21.5,29.0,44.0,52.2,73.8,76.2,80.5,88.9,127.6,129.4,136.5$, 143.4, 208.6 ppm. Exact mass for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 289.1137 (found) 289.1135.

2-Ethyl-3-(propa-1,2-dienyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2e). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~m}$, $1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.69 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 7.1,21.5,26.4,55.4,67.5,78.2,82.2,121.5,127.2,129.6$, 135.1, 135.2, 143.3, 210.4 ppm . Exact mass for ( $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}$, HRFAB): (calcd) 290.1215, (found) 290.1213.
$N$-(Buta-2,3-dienyl)-4-methyl- $N$-(1-phenylprop-2-ynyl)benzenesulfonamide (1f). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.40(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.77(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H})$, 4.51 (m, 1 H ), 4.77 (m, 1 H ), 6.11 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (m, $5 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.8,44.6,53.3,76.0,78.4,87.9$, $128.0,128.3,128.6,128.63,128.7,129.7,136.0,136.6,143.8 \mathrm{ppm}$. Exact mass for $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 337.1137, (found) 337.1137.

2-Phenyl-3-(propa-1,2-dienyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2f). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.42$ (s, 3 H ), 4.34 (m, 1 H), $4.45(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H})$, $5.76(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.43$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta$ ?21.6, 54.9, 55.0, 70.3, 78.7, 87.2, 121.2, 127.2, 127.9, 128.2, $128.5,129.5,136.2,136.5,140.0,143.0,211.4$ ppm. Exact mass for $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 337.1137, (found) 337.1137.

4-Methyl- N -(penta-3,4-dien-2-yl)- N -(prop-2-ynyl)benzenesulfonamide (1g). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.26(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}$ ), 2.17 (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.43 (s, 3 H ), 3.96 (dd, $J=$ $18.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=18.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H})$, $4.82(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 18.1, 21.7, 32.2, 52.0, 72.4, 78.1, 80.4, 91.8, 127.7, 129.7, 137.8, 143.6, 208.9 ppm. Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 275.0980, (found) 275.0982.

2-Methyl-4-(propa-1,2-dienyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3$ $\mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.99$ (m, 2 H), $5.40(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $21.7,23.0,55.3,64.0,78.5,87.7,127.1,127.6,129.9,131.4,135.0$, 143.6, 211.1 ppm . Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 275.0980, (found) 275.0982.
$N$-(3-Cyclobutylideneallyl)-4-methyl- $N$-(prop-2-ynyl)benzenesulfonamide (1i). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.93(\mathrm{~m}, 2 \mathrm{H})$, $2.01(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.87(\mathrm{~m}, 4 \mathrm{H}), 3.81$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 3.83 ( $\mathrm{s}, 1 \mathrm{H}$ ), 4.13 (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.98 (m, 1 H ), $7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 17.5,21.6,29.6,35.6,46.6,73.4,77.2$, 87.8, 103.0, 127.7, 129.5, 136.1, 143.5, 197.5 ppm. Exact mass for ( $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}$, EI): (calcd) 301.1137, (found) 301.1134.

3-(2-Cyclobutylidenevinyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2i). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.91(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.80$ (m, 4 H), 4.03 (m, 2 H$), 4.06$ (m, 2 H$), 5.38$ (s, 1 H$), 5.73$ (m, 1 H), 7.23 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 17.4,21.5,29.9,54.8,55.5,89.8,103.9$, 120.1, 127.2, 129.7, 134.3, 135.2, 143.4, 197.4 ppm. Exact mass for $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}, \mathrm{EI}\right)$ : (calcd) 301.1137, (found) 301.1136 .
( $\boldsymbol{E}$ )-3-(Cyclohexenylmethylene)-4-methylene-1-tosylpyrrolidine (3j). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~m}$, $2 \mathrm{H}), 2.06$ (m, 2 H ), 2.45 (s, 3 H ), 3.81 (m, 2 H ), 3.85 (m, 2 H ), $5.01(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 5.41-5.46(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta$ 21.7, 22.3, 23.1, 25.4, 28.9, 45.8, 49.8, 113.3, 120.7, 126.6, 128.1, 129.7, 133.9, 136.3, 136.5, 141.4, 143.7 ppm. Exact mass for $\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}, \mathrm{EI}\right)$ : (calcd) 329.1449, (found) 329.1448 .

N -(But-2-ynyl)- N -(buta-2,3-dienyl)-4-methylbenzenesulfonamide (1k). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.49(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3$ H), 2.35 (s, 3 H ), 3.77 (m, 2 H ), $4.00(\mathrm{q}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.69$ $(\mathrm{m}, 2 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ ?3.4, 21.7, 36.6, 45.7, 71.8, 81.7, 85.8, 128.0, 129.5, 136.4, 143.5, 209.9 ppm. Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}, \mathrm{EI}\right)$ : (calcd) 275.0980, (found) 275.0981.

N -(But-3-ynyl)- N -(buta-2,3-dienyl)-4-methylbenzenesulfonamide (1m). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.87(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{td}, J=7.6 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 7.17$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ ?19.4, 21.7, 46.0, 47.5, 70.3, 76.7, 81.2, 86.1, 128.5, 129.9, 137.2, 143.6, 209.7 ppm. Exact mass for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{~S}_{1} \mathrm{O}_{2}\right.$, EI): (calcd) 275.0980, (found) 275.0977.

Acknowledgment. This work was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C00072) and the SRC/ERC program of MOST/KOSEF (R11-2005-065). S.I.L., S.H.S., S.M.K., and K.K. thank to the BK21 fellowship.

Supporting Information Available: Characterization of new compounds and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.
JO061318Y


[^0]:    (1) For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (b) Frühauf, H.-W. Chem. Rev. 1997, 97, 523. (c) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
    (2) (a) Brummond, K. M.; You, L. F. Tetrahedron 2005, 61, 6180. (b) Gupta, A. K.; Rhim, C. Y.; Oh, C. H. Tetrahedron Lett. 2005, 46, 2247. (c) Oh, C. H.; Park, D. I.; Jung, S. H.; Reddy, V. R.; Gupta, A. K.; Kim, Y. M. Synlett 2005, 2092. (d) Kumareswaran, R.; Shin, S.; Gallou, I.; RajanBabu, T. V. J. Org. Chem. 2004, 69, 7157. (e) Shibata, T.; Kadowaki, S.; Takagi, K. Organometallics 2004, 23, 4116. (f) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. Tetrahedron Lett. 2004, 45, 4117. (g) Oh, C. H.; Jung, S. H.; Park, D. I.; Choi, J. H. Tetrahedron Lett. 2004, 45, 2499. (h) Oh, C. H.; Jung, S. H.; Rhim, C. Y. Tetrahedron Lett. 2001, 42, 8669. (i) Urabe, H.; Takeda, T.; Hideura, D.; Sato. F. J. Am. Chem. Soc. 1997, 119 , 11295.

[^1]:    (3) (a) Mukai, C.; Hirose, T.; Teramoto, S.; Kitagaki, S. Tetrahedron 2005, 61, 10983. (b) Brummond, K. M.; Curran, D. P.; Mitasev, B.; Fischer, S. J. Org. Chem. 2005, 70, 1745. (c) Cao, H.; Van Ornum, S. G.; Deschamps, J.; Flippen-Anderson, J.; Laib, F.; Cook, J. M. J. Am. Chem. Soc. 2005, 127, 933. (d) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2004, 3377. (e) Brummond, K. M.; Gao, D. Org. Lett. 2003, 5, 3491. (e) Brummond, K. M.; Kerekes, A. D.; Wan, H. J. Org. Chem. 2002, 67, 5156. (f) Brummond, K. M.; Chen, H. F.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org. Lett. 2002, 4, 1931. (f) Mukai, C.; Nomura, I.; Yamanishi, K.; Hanaoka, M. Org. Lett. 2002, 4, 1755. (g) Brummond, K. M.; Lu, J. L.; Petersen, J. J. Am. Chem. Soc. 2000, 122, 4915. (h) Brummond, K. M.; Lu, J. L. J. Am. Chem. Soc. 1999, 121, 5087. (i) Brummond, K. M.; Wan, H. Tetrahedron Lett. 1998, 39, 931. (j) Kent, J. L.; Wan, H. H.; Brummond, K. M. Tetrahedron Lett. 1995, 36, 2407.
    (4) For reviews, see: (a) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (b) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215. (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (d) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (e) Trost, B. M.; Krische, M. J. Synlett 1998, 1. For Au- and Pt-catalyzed enyne cycloisomerizations, see: (f) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (g) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6179. (h) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293. (i) NietoOberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402. (j) Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (k) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704.
    (5) (a) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synlett 2006, 575. (b) Cadran, N.; Cariou, K.; Hervé, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. J. Am. Chem. Soc. 2004, 126, 3408.
    (6) (a) Mamane, V.; Hannen, P.; Fûrstner, A. Chem. Eur. J. 2004, 10, 4556. (b) Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.; Murai, S. J. Am. Chem. Soc. 2003, 125, 7812. (c) Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294. (d) Fûrstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264. (e) Inoue, H.; Chatani, N.; Murai, S. J. Org. Chem. 2002, 67, 1414.
    (7) (a) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524. (b) Schmidt, B. Angew. Chem., Int. Ed. 2003, 42, 4996. (c) Kitamura, T.; Sato, Y.; Mori, M. Adv. Synth. Catal. 2002, 344, 678. (d) Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082. (e) Kinoshita, A.; Mori, M. Synlett 1994, 1020.
    (8) Nieto-Oberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Núñez, E.; Nevado, C.; Herrero-Gómez, E.; Raducan, M.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677.
    (9) Miyanohana, Y.; Chatani, N. Org. Lett. 2006, 8, 2155.
    (10) Recently, we found that $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right] \mathrm{BF}_{4}$ was active in the cycloisomerization of some enyne substrates. Lee, S. I.; Baek, J. Y.; Chung, Y. K. Manuscript in preparation.

[^2]:    (11) Murakami, M.; Kadowaki, S.; Matsuda, T. Org. Lett. 2005, 7, 3953.

